88 research outputs found

    Proarrhythmic remodelling of the right ventricle in a porcine model of repaired tetralogy of Fallot

    Get PDF
    OBJECTIVE: The growing adult population with surgically corrected tetralogy of Fallot (TOF) is at risk of arrhythmias and sudden cardiac death. We sought to investigate the contribution of right ventricular (RV) structural and electrophysiological remodelling to arrhythmia generation in a preclinical animal model of repaired TOF (rTOF). METHODS AND RESULTS: Pigs mimicking rTOF underwent cardiac MRI functional characterisation and presented with pulmonary regurgitation, RV hypertrophy, dilatation and dysfunction compared with Sham-operated animals (Sham). Optical mapping of rTOF RV-perfused wedges revealed a significant prolongation of RV activation time with slower conduction velocities and regions of conduction slowing well beyond the surgical scar. A reduced protein expression and lateralisation of Connexin-43 were identified in rTOF RVs. A remodelling of extracellular matrix-related gene expression and an increase in collagen content that correlated with prolonged RV activation time were also found in these animals. RV action potential duration (APD) was prolonged in the epicardial anterior region at early and late repolarisation level, thus contributing to a greater APD heterogeneity and to altered transmural and anteroposterior APD gradients in rTOF RVs. APD remodelling involved changes in Kv4.3 and MiRP1 expression. Spontaneous arrhythmias were more frequent in rTOF wedges and more complex in the anterior than in the posterior RV. CONCLUSION: Significant remodelling of RV conduction and repolarisation properties was found in pigs with rTOF. This remodelling generates a proarrhythmic substrate likely to facilitate re-entries and to contribute to sudden cardiac death in patients with rTOF

    A focused ultrasound treatment system for moving targets (part I):generic system design and in-silico first-stage evaluation

    Get PDF
    Background Focused ultrasound (FUS) is entering clinical routine as a treatment option. Currently, no clinically available FUS treatment system features automated respiratory motion compensation. The required quality standards make developing such a system challenging. Methods A novel FUS treatment system with motion compensation is described, developed with the goal of clinical use. The system comprises a clinically available MR device and FUS transducer system. The controller is very generic and could use any suitable MR or FUS device. MR image sequences (echo planar imaging) are acquired for both motion observation and thermometry. Based on anatomical feature tracking, motion predictions are estimated to compensate for processing delays. FUS control parameters are computed repeatedly and sent to the hardware to steer the focus to the (estimated) target position. All involved calculations produce individually known errors, yet their impact on therapy outcome is unclear. This is solved by defining an intuitive quality measure that compares the achieved temperature to the static scenario, resulting in an overall efficiency with respect to temperature rise. To allow for extensive testing of the system over wide ranges of parameters and algorithmic choices, we replace the actual MR and FUS devices by a virtual system. It emulates the hardware and, using numerical simulations of FUS during motion, predicts the local temperature rise in the tissue resulting from the controls it receives. Results With a clinically available monitoring image rate of 6.67 Hz and 20 FUS control updates per second, normal respiratory motion is estimated to be compensable with an estimated efficiency of 80%. This reduces to about 70% for motion scaled by 1.5. Extensive testing (6347 simulated sonications) over wide ranges of parameters shows that the main source of error is the temporal motion prediction. A history-based motion prediction method performs better than a simple linear extrapolator. Conclusions The estimated efficiency of the new treatment system is already suited for clinical applications. The simulation-based in-silico testing as a first-stage validation reduces the efforts of real-world testing. Due to the extensible modular design, the described approach might lead to faster translations from research to clinical practice

    3D MRI of explanted sheep hearts with submillimeter isotropic spatial resolution: comparison between diffusion tensor and structure tensor imaging

    Get PDF
    OBJECTIVE: The aim of the study is toΒ compare structure tensor imaging (STI) with diffusion tensor imaging (DTI) of the sheep heart (approximately the same size as the human heart). MATERIALS AND METHODS: MRI acquisition on three sheep ex vivo hearts was performed at 9.4Β T/30Β cm with a seven-element RF coil. 3D FLASH with an isotropic resolution of 150Β Β΅m and 3D spin-echo DTI at 600Β Β΅m were performed. Tensor analysis, angles extraction and segments divisions were performed on both volumes. RESULTS: A 3D FLASH allows for visualization of the detailed structure of the left and right ventricles. The helix angle determined using DTI and STI exhibited a smooth transmural change from the endocardium to the epicardium. Both the helix and transverse angles were similar between techniques. Sheetlet organization exhibited the same pattern in both acquisitions, but local angle differences were seen and identified in 17 segments representation. DISCUSSION: This study demonstrated the feasibility of high-resolution MRI for studying the myocyte and myolaminar architecture of sheep hearts. We presented the results of STI on three whole sheep ex vivo hearts and demonstrated a good correspondence between DTI and STI

    A 63 element 1.75 dimensional ultrasound phased array for the treatment of benign prostatic hyperplasia

    Get PDF
    BACKGROUND: Prostate cancer and benign prostatic hyperplasia are very common diseases in older American men, thus having a reliable treatment modality for both diseases is of great importance. The currently used treating options, mainly surgical ones, have numerous complications, which include the many side effects that accompany such procedures, besides the invasive nature of such techniques. Focused ultrasound is a relatively new treating modality that is showing promising results in treating prostate cancer and benign prostatic hyperplasia. Thus this technique is gaining more attention in the past decade as a non-invasive method to treat both diseases. METHODS: In this paper, the design, construction and evaluation of a 1.75 dimensional ultrasound phased array to be used for treating prostate cancer and benign prostatic hyperplasia is presented. With this array, the position of the focus can be controlled by changing the electrical power and phase to the individual elements for electronically focusing and steering in a three dimensional volume. The array was designed with a maximum steering angle of Β± 13.5Β° in the transverse direction and a maximum depth of penetration of 11 cm, which allows the treatment of large prostates. The transducer piezoelectric ceramic, matching layers and cable impedance have been designed for maximum power transfer to tissue. RESULTS: To verify the capability of the transducer for focusing and steering, exposimetry was performed and the results correlated well with the calculated field. Ex vivo experiments using bovine tissue were performed with various lesion sizes and indicated the capability of the transducer to ablate tissue using short sonications. CONCLUSION: A 1.75 dimensional array, that overcame the drawbacks associated with one-dimensional arrays, has been designed, built and successfully tested. Design issues, such as cable and ceramic capacitances, were taken into account when designing this array. The final prototype overcame also the problem of generating grating lobes at unwanted locations by tapering the array elements

    Whole Body Screening Using High-Temperature Superconducting MR Volume Resonators: Mice Studies

    Get PDF
    High temperature superconducting (HTS) surface resonators have been used as a low loss RF receiver resonator for improving magnetic resonance imaging image quality. However, the application of HTS surface resonators is significantly limited by their filling factor. To maximize the filling factor, it is desirable to have the RF resonator wrapped around the sample so that more nuclear magnetic dipoles can contribute to the signal. In this study, a whole new Bi2Sr2Ca2Cu2O3 (Bi-2223) superconducting saddle resonator (width of 5 cm and length of 8 cm) was designed for the magnetic resonance image of a mouse's whole body in Bruker 3 T MRI system. The experiment was conducted with a professionally-made copper saddle resonator and a Bi-2223 saddle resonator to show the difference. Signal-to-noise ratio (SNR) with the HTS saddle resonator at 77 K was 2.1 and 2 folds higher than that of the copper saddle resonator at 300 K for a phantom and an in-vivo mice whole body imaging. Testing results were in accordance with predicted ones, and the difference between the predicted SNR gains and measured SNR gains were 2.4%∼2.7%. In summary, with this HTS saddle system, a mouse's whole body can be imaged in one scan and could reach a high SNR due to a 2 folds SNR gain over the professionally-made prototype of copper saddle resonator at 300 K. The use of HTS saddle resonator not only improves SNR but also enables a mouse's whole body screen in one scan

    Tidal Energy Fish Impact : method development to determine the impact of open water tidal energy converters on fish

    Get PDF
    The goals of the proposed project are: 1. to develop a robust method and experimental set‐up to determine behaviour of fish in the vicinity of tidal turbines and collision risk in the strong turbid currents of the Marsdiep based on DIDSON technology, 2. to provide a first insight and measure avoidance and collision rate of fish (and although the focus will be on fish, also if marine mammals such as harbour porpoises and seals approach the device this will be determined within the project), 3. to develop data analysis methodology since analysing large DIDSON datasets manually is very labour‐intensive and will enhance the efficiency of future large scale studies using DIDSON

    Magnetic Resonance Thermometry at 7T for Real-Time Monitoring and Correction of Ultrasound Induced Mild Hyperthermia

    Get PDF
    While Magnetic Resonance Thermometry (MRT) has been extensively utilized for non-invasive temperature measurement, there is limited data on the use of high field (β‰₯7T) scanners for this purpose. MR-guided Focused Ultrasound (MRgFUS) is a promising non-invasive method for localized hyperthermia and drug delivery. MRT based on the temperature sensitivity of the proton resonance frequency (PRF) has been implemented in both a tissue phantom and in vivo in a mouse Met-1 tumor model, using partial parallel imaging (PPI) to speed acquisition. An MRgFUS system capable of delivering a controlled 3D acoustic dose during real time MRT with proportional, integral, and derivative (PID) feedback control was developed and validated. Real-time MRT was validated in a tofu phantom with fluoroptic temperature measurements, and acoustic heating simulations were in good agreement with MR temperature maps. In an in vivo Met-1 mouse tumor, the real-time PID feedback control is capable of maintaining the desired temperature with high accuracy. We found that real time MR control of hyperthermia is feasible at high field, and k-space based PPI techniques may be implemented for increasing temporal resolution while maintaining temperature accuracy on the order of 1Β°C
    • …
    corecore